初三數(shù)學上冊重點知識點_每日快報
偉大的成績和辛勤勞動是成正比例的,有一分勞動就有一分收獲,積累,從少到多,奇跡就可以創(chuàng)造出來。學習也是一樣的,需要積累,從少變多。下面是小編給大家整理的初三數(shù)學知識點,希望對大家有所幫助。
初三新學期數(shù)學知識點
一元一次方程:
【資料圖】
①在一個方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是
1、這樣的方程叫一元一次方程。
②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數(shù)式,所得結(jié)果仍是等式。
解一元一次方程的步驟:
去分母,移項,合并同類項,未知數(shù)系數(shù)化為1。
二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的方程叫做二元一次方程。
二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。
解二元一次方程組的方法:代入消元法/加減消元法。
2、不等式與不等式組
不等式:
①用符號”=“號連接的式子叫不等式。
②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。
③不等式的兩邊都乘以或者除以一個正數(shù),不等號方向不變。
④不等式的兩邊都乘以或除以同一個負數(shù),不等號方向相反。
不等式的解集:
①能使不等式成立的未知數(shù)的值,叫做不等式的解。
②一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。
③求不等式解集的過程叫做解不等式。
一元一次不等式:左右兩邊都是整式,只含有一個未知數(shù),且未知數(shù)的次數(shù)是1的不等式叫一元一次不等式。
一元一次不等式組:
①關(guān)于同一個未知數(shù)的幾個一元一次不等式合在一起,就組成了一元一次不等式組。
②一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。
③求不等式組解集的過程,叫做解不等式組。
初三數(shù)學上冊知識點歸納
二元一次方程組
1、定義:含有兩個未知數(shù),并且未知項的次數(shù)是1的整式方程叫做二元一次方程。
2、二元一次方程組的解法
(1)代入法
由一個二次方程和一個一次方程所組成的方程組通常用代入法來解,這是基本的消元降次方法。
(2)因式分解法
在二元二次方程組中,至少有一個方程可以分解時,可采用因式分解法通過消元降次來解。
(3)配方法
將一個式子,或一個式子的某一部分通過恒等變形化為完全平方式或幾個完全平方式的和。
(4)韋達定理法
通過韋達定理的逆定理,可以利用兩數(shù)的和積關(guān)系構(gòu)造一元二次方程。
(5)消常數(shù)項法
當方程組的兩個方程都缺一次項時,可用消去常數(shù)項的方法解。
解一元二次方程
解一元二次方程的基本思想方法是通過“降次”將它化為兩個一元一次方程。
1、直接開平方法:
用直接開平方法解形如(x-m)2=n(n≥0)的方程,其解為x=±m(xù).
直接開平方法就是平方的逆運算.通常用根號表示其運算結(jié)果.
2、配方法
通過配成完全平方式的方法,得到一元二次方程的根的方法。這種解一元二次方程的方法稱為配方法,配方的依據(jù)是完全平方公式。
(1)轉(zhuǎn)化:將此一元二次方程化為ax^2+bx+c=0的形式(即一元二次方程的一般形式)
(2)系數(shù)化1:將二次項系數(shù)化為1
(3)移項:將常數(shù)項移到等號右側(cè)
(4)配方:等號左右兩邊同時加上一次項系數(shù)一半的平方
(5)變形:將等號左邊的代數(shù)式寫成完全平方形式
(6)開方:左右同時開平方
(7)求解:整理即可得到原方程的根
數(shù)學學習方法技巧
自學能力的培養(yǎng)是深化學習的必由之路
在學習新概念、新運算時,老師們總是通過已有知識自然而然過渡到新知識,水到渠成,亦即所謂“溫故而知新”。因此說,數(shù)學是一門能自學的學科,自學成才最典型的例子就是數(shù)學家華羅庚。
我們在課堂上聽老師講解,不光是學習新知識,更重要的是潛移默化老師的那種數(shù)學思維習慣,逐漸地培養(yǎng)起自己對數(shù)學的一種悟性。我去佛山一中開家長會時,一中校長的一番話使我感觸良多。他說:我是教物理的,學生物理學得好,不是我教出來的,而是他們自己悟出來的。當然,校長是謙虛的,但他說明了一個道理,學生不能被動地學習,而應主動地學習。一個班里幾十個學生,同一個老師教,差異那么大,這就是學習主動性問題了。
自學能力越強,悟性就越高。隨著年齡的增長,同學們的依賴性應不斷減弱,而自學能力則應不斷增強。因此,要養(yǎng)成預習的習慣。在老師講新課前,能不能運用自己所學過的已掌握的舊知識去預習新課,結(jié)合新課中的新規(guī)定去分析、理解新的學習內(nèi)容。由于數(shù)學知識的無矛盾性,你所學過的數(shù)學知識永遠都是有用的,都是正確的,數(shù)學的進一步學習只是加深拓廣而已。因此,以前的數(shù)學學得扎實,就為以后的進取奠定了基礎(chǔ),就不難自學新課。同時,在預習新課時,碰到什么自己解決不了的問題,帶著問題去聽老師講解新課,收獲之大是不言而喻的。有些同學為什么聽老師講新課時總有一種似懂非懂的感覺,或者是“一聽就懂、一做就錯”,就是因為沒有預習,沒有帶著問題學,沒有將“要我學”真正變?yōu)椤拔乙獙W”,力求把知識變?yōu)樽约旱摹W來學去,知識還是別人的。檢驗數(shù)學學得好不好的標準就是會不會解題。聽懂并記憶有關(guān)的定義、法則、公式、定理,只是學好數(shù)學的必要條件,能獨立解題、解對題才是學好數(shù)學的標志。
初三數(shù)學上冊重點知識點相關(guān)文章:
★ 初三數(shù)學知識點上冊總結(jié)歸納
★ 初三數(shù)學上冊知識點總結(jié)
★ 初三數(shù)學知識點考點歸納總結(jié)
★ 九年級上冊數(shù)學知識點歸納整理
★ 初三上冊數(shù)學知識點總結(jié)
★ 初三數(shù)學中考復習重點章節(jié)知識點歸納
★ 初三上冊數(shù)學知識點歸納
★ 初三上冊數(shù)學知識點
★ 初三數(shù)學復習知識點總結(jié)
詞條內(nèi)容僅供參考,如果您需要解決具體問題
(尤其在法律、醫(yī)學等領(lǐng)域),建議您咨詢相關(guān)領(lǐng)域?qū)I(yè)人士。