亚洲成色在线无码_中文字幕专区高清在线观看_国产精品视频一区二区三区四_国内自拍视频一区二区三区_伊人伊成久久人综合网小说

首頁 > 職業(yè)資格  > 

初中數(shù)學(xué)各種試題及答案

2023-03-15   來源:萬能知識網(wǎng)

初中數(shù)學(xué)應(yīng)用題試題精選

1、我們規(guī)定兩人輪流做一個工程是指,第一個人先做一個小時,第二個人做一個小時,然后再由第一個人做一個小時,然后又由第二個人做一個小時,如此反復(fù),做完為止。如果甲、乙輪流做一個工程需要9.8小時,而乙、甲輪流做同樣的工程只需要9.6小時,那乙單獨做這個工程需要多少小時?

解:兩次做每人所花時間:甲乙


(相關(guān)資料圖)

5小時4.8小時

4.6小時5小時

∴甲做0.4小時完成的工程等于乙做0.2小時,乙的效率是甲的2倍,甲做5小時完成的任務(wù)乙只要2.5小時就能完成。

乙單獨完成這個工程要2.5+4.8=7.3(小時)

2、甲、乙兩地相距120千米,客車和貨車同時從甲地出發(fā)駛向乙地,客車到達乙地后立即沿原路返回,在途中的丙地與貨車相遇。之后,客車和貨車繼續(xù)前進,各自到達甲地和乙地后又馬上折回,結(jié)果兩車又恰好在丙地相遇。已知兩車在出發(fā)后的2小時首次相遇,那么客車的速度是每小時多少千米?

解:(示意圖略)

第一次相遇,兩車合走2個全程,第二次相遇,兩車又比第一次相遇時多走2個全程,∴客車、貨車第一次相遇時各自走的路程與第一次相遇到第二次相遇時各自走的路程分別相等。兩次相遇都在丙點,設(shè)乙丙之間路程為1份,可得甲丙之間路程為2份,∴乙丙間路程=120÷3=40,

客車速度為(120+40)÷2=80(千米/小時)

上面對數(shù)學(xué)應(yīng)用題試題的知識學(xué)習(xí),同學(xué)們都能很好的掌握了吧,希望上面的題目知識可以幫助同學(xué)們對數(shù)學(xué)知識的鞏固學(xué)習(xí)哦。

因式分解同步練習(xí)(解答題)

解答題

3.把下列各式分解因式:

①a2+10a+25 ②m2-12mn+36n2

③xy3-2x2y2+x3y ④(x2+4y2)2-16x2y2

10.已知x=-19,y=12,求代數(shù)式4x2+12xy+9y2的值.

11.已知│x-y+1│與x2+8x+16互為相反數(shù),求x2+2xy+y2的值.

答案:

4.①(a+5)2;②(m-6n)2;③xy(x-y)2;④(x+2y)2(x-2y)2

因式分解同步練習(xí)(填空題)

填空題

5.已知9x2-6xy+k是完全平方式,則k的值是________.

6.9a2+(________)+25b2=(3a-5b)2

7.-4x2+4xy+(_______)=-(_______).

8.已知a2+14a+49=25,則a的值是_________.

答案:

5.y2 6.-30ab 7.-y2;2x-y 8.-2或-12

因式分解同步練習(xí)(選擇題)

選擇題

1.已知y2+my+16是完全平方式,則m的值是( )

A.8 B.4 C.±8 D.±4

2.下列多項式能用完全平方公式分解因式的是( )

A.x2-6x-9 B.a(chǎn)2-16a+32 C.x2-2xy+4y2 D.4a2-4a+1

3.下列各式屬于正確分解因式的是( )

A.1+4x2=(1+2x)2 B.6a-9-a2=-(a-3)2

C.1+4m-4m2=(1-2m)2 D.x2+xy+y2=(x+y)2

4.把x4-2x2y2+y4分解因式,結(jié)果是( )

A.(x-y)4 B.(x2-y2)4 C.[(x+y)(x-y)]2 D.(x+y)2(x-y)2

答案:

1.C 2.D 3.B 4.D

填空題(每小題4分,共28分)

1.(4分)(1)當x _________ 時,(x﹣4)0=1;(2)(2/3)2002×(1.5)2003÷(﹣1)2004= _________

2.(4分)分解因式:a2﹣1+b2﹣2ab= _________ .

3.(4分)(2004萬州區(qū))如圖,要給這個長、寬、高分別為x、y、z的箱子打包,其打包方式如圖所示,則打包帶的長至少要 _________ .(單位:mm)(用含x、y、z的代數(shù)式表示)

4.(4分)(2004鄭州)如果(2a+2b+1)(2a+2b﹣1)=63,那么a+b的值為 _________ .

5.(4分)(2002長沙)如圖為楊輝三角表,它可以幫助我們按規(guī)律寫出(a+b)n(其中n為正整數(shù))展開式的系數(shù),請仔細觀察表中規(guī)律,填出(a+b)4的展開式中所缺的系數(shù).

(a+b)1=a+b;

(a+b)2=a2+2ab+b2;

(a+b)3=a3+3a2b+3ab2+b3;

(a+b)4=a4+ _________ a3b+ _________ a2b2+ _________ ab3+b4.

6.(4分)(2004荊門)某些植物發(fā)芽有這樣一種規(guī)律:當年所發(fā)新芽第二年不發(fā)芽,老芽在以后每年都發(fā)芽.發(fā)芽規(guī)律見下表(設(shè)第一年前的新芽數(shù)為a)

第n年12345…

老芽率aa2a3a5a…

新芽率0aa2a3a…

總芽率a2a3a5a8a…

照這樣下去,第8年老芽數(shù)與總芽數(shù)的比值為 _________ (精確到0.001).

7.(4分)若a的值使得x2+4x+a=(x+2)2﹣1成立,則a的值為 _________ .

答案:7.

考點:零指數(shù)冪;有理數(shù)的乘方。

專題:計算題。

分析:(1)根據(jù)零指數(shù)的意義可知x﹣4≠0,即x≠4;

(2)根據(jù)乘方運算法則和有理數(shù)運算順序計算即可.

解答:解:(1)根據(jù)零指數(shù)的意義可知x﹣4≠0,即x≠4;

(2)(2/3)2002×(1.5)2003÷(﹣1)2004=(2/3×3/2)2002×1.5÷1=1.5.

點評:主要考查的知識點有:零指數(shù)冪,負指數(shù)冪和平方的運算,負指數(shù)為正指數(shù)的倒數(shù),任何非0數(shù)的0次冪等于1.

8.

考點:因式分解-分組分解法。

分析:當被分解的式子是四項時,應(yīng)考慮運用分組分解法進行分解.本題中a2+b2﹣2ab正好符合完全平方公式,應(yīng)考慮為一組.

解答:解:a2﹣1+b2﹣2ab

=(a2+b2﹣2ab)﹣1

=(a﹣b)2﹣1

=(a﹣b+1)(a﹣b﹣1).

故答案為:(a﹣b+1)(a﹣b﹣1).

點評:此題考查了用分組分解法進行因式分解.難點是采用兩兩分組還是三一分組,要考慮分組后還能進行下一步分解.

9.

考點:列代數(shù)式。

分析:主要考查讀圖,利用圖中的信息得出包帶的長分成3個部分:包帶等于長的有2段,用2x表示,包帶等于寬有4段,表示為4y,包帶等于高的有6段,表示為6z,所以總長時這三部分的和.

解答:解:包帶等于長的有2x,包帶等于寬的有4y,包帶等于高的有6z,所以總長為2x+4y+6z.

點評:解決問題的關(guān)鍵是讀懂題意,找到所求的量的等量關(guān)系.

10.

考點:平方差公式。

分析:將2a+2b看做整體,用平方差公式解答,求出2a+2b的值,進一步求出(a+b)的值.

解答:解:∵(2a+2b+1)(2a+2b﹣1)=63,

∴(2a+2b)2﹣12=63,

∴(2a+2b)2=64,

2a+2b=±8,

兩邊同時除以2得,a+b=±4.

點評:本題考查了平方差公式,整體思想的利用是解題的關(guān)鍵,需要同學(xué)們細心解答,把(2a+2b)看作一個整體.

11

考點:完全平方公式。

專題:規(guī)律型。

分析:觀察本題的規(guī)律,下一行的數(shù)據(jù)是上一行相鄰兩個數(shù)的和,根據(jù)規(guī)律填入即可.

解答:解:(a+b)4=a4+4a3b+6a2b2+4ab3+b4.

點評:在考查完全平方公式的前提下,更深層次地對楊輝三角進行了了解.

12

考點:規(guī)律型:數(shù)字的變化類。

專題:圖表型。

分析:根據(jù)表格中的數(shù)據(jù)發(fā)現(xiàn):老芽數(shù)總是前面兩個數(shù)的和,新芽數(shù)是對應(yīng)的前一年的老芽數(shù),總芽數(shù)等于對應(yīng)的新芽數(shù)和老芽數(shù)的和.根據(jù)這一規(guī)律計算出第8年的老芽數(shù)是21a,新芽數(shù)是13a,總芽數(shù)是34a,則比值為21/34≈0.618.

解答:解:由表可知:老芽數(shù)總是前面兩個數(shù)的和,新芽數(shù)是對應(yīng)的前一年的老芽數(shù),總芽數(shù)等于對應(yīng)的新芽數(shù)和老芽數(shù)的和,

所以第8年的老芽數(shù)是21a,新芽數(shù)是13a,總芽數(shù)是34a,則比值為21/34≈0.618.

點評:根據(jù)表格中的數(shù)據(jù)發(fā)現(xiàn)新芽數(shù)和老芽數(shù)的規(guī)律,然后進行求解.本題的關(guān)鍵規(guī)律為:老芽數(shù)總是前面兩個數(shù)的和,新芽數(shù)是對應(yīng)的前一年的老芽數(shù),總芽數(shù)等于對應(yīng)的新芽數(shù)和老芽數(shù)的和.

13.

考點:整式的混合運算。

分析:運用完全平方公式計算等式右邊,再根據(jù)常數(shù)項相等列出等式,求解即可.

解答:解:∵(x+2)2﹣1=x2+4x+4﹣1,

∴a=4﹣1,

解得a=3.

故本題答案為:3.

點評:本題考查了完全平方公式,熟記公式,根據(jù)常數(shù)項相等列式是解題的關(guān)鍵.

以上對整式的乘除與因式分解單元測試卷的練習(xí)學(xué)習(xí),同學(xué)們都能很好的掌握了吧,希望同學(xué)們都能很好的參考,迎接考試工作。

整式的乘除與因式分解單元測試卷

選擇題(每小題4分,共24分)

1.(4分)下列計算正確的是( )

A.a(chǎn)2+b3=2a5B.a(chǎn)4÷a=a4C.a(chǎn)2a3=a6D.(﹣a2)3=﹣a6

2.(4分)(x﹣a)(x2+ax+a2)的計算結(jié)果是( )

A.x3+2ax+a3B.x3﹣a3C.x3+2a2x+a3D.x2+2ax2+a3

3.(4分)下面是某同學(xué)在一次檢測中的計算摘錄:

①3x3(﹣2x2)=﹣6x5 ②4a3b÷(﹣2a2b)=﹣2a ③(a3)2=a5④(﹣a)3÷(﹣a)=﹣a2

其中正確的個數(shù)有( )

A.1個B.2個C.3個D.4個

4.(4分)若x2是一個正整數(shù)的平方,則它后面一個整數(shù)的平方應(yīng)當是( )

A.x2+1B.x+1C.x2+2x+1D.x2﹣2x+1

5.(4分)下列分解因式正確的是( )

A.x3﹣x=x(x2﹣1)B.m2+m﹣6=(m+3)(m﹣2)C.(a+4)(a﹣4)=a2﹣16D.x2+y2=(x+y)(x﹣y)

6.(4分)(2003常州)如圖:矩形花園ABCD中,AB=a,AD=b,花園中建有一條矩形道路LMPQ及一條平行四邊形道路RSTK.若LM=RS=c,則花園中可綠化部分的面積為( )

A.bc﹣ab+ac+b2B.a(chǎn)2+ab+bc﹣acC.a(chǎn)b﹣bc﹣ac+c2D.b2﹣bc+a2﹣ab

答案:

1,考點:同底數(shù)冪的除法;合并同類項;同底數(shù)冪的乘法;冪的乘方與積的乘方。

分析:根據(jù)同底數(shù)相除,底數(shù)不變指數(shù)相減;同底數(shù)冪相乘,底數(shù)不變指數(shù)相加;冪的乘方,底數(shù)不變指數(shù)相乘,對各選項計算后利用排除法求解.

解答:解:A、a2與b3不是同類項,不能合并,故本選項錯誤;

B、應(yīng)為a4÷a=a3,故本選項錯誤;

C、應(yīng)為a3a2=a5,故本選項錯誤;

D、(﹣a2)3=﹣a6,正確.

故選D.

點評:本題考查合并同類項,同底數(shù)冪的除法,同底數(shù)冪的乘法,冪的乘方的性質(zhì),熟練掌握運算性質(zhì)是解題的關(guān)鍵.

2.

考點:多項式乘多項式。

分析:根據(jù)多項式乘多項式法則,先用一個多項式的每一項乘以另一個多項式的每一項,再把所得的積相加,計算即可.

解答:解:(x﹣a)(x2+ax+a2),

=x3+ax2+a2x﹣ax2﹣a2x﹣a3,

=x3﹣a3.

故選B.

點評:本題考查了多項式乘多項式法則,合并同類項時要注意項中的指數(shù)及字母是否相同.

3.

考點:單項式乘單項式;冪的乘方與積的乘方;同底數(shù)冪的除法;整式的"除法。

分析:根據(jù)單項式乘單項式的法則,單項式除單項式的法則,冪的乘方的性質(zhì),同底數(shù)冪的除法的性質(zhì),對各選項計算后利用排除法求解.

解答:解:①3x3(﹣2x2)=﹣6x5,正確;

②4a3b÷(﹣2a2b)=﹣2a,正確;

③應(yīng)為(a3)2=a6,故本選項錯誤;

④應(yīng)為(﹣a)3÷(﹣a)=(﹣a)2=a2,故本選項錯誤.

所以①②兩項正確.

故選B.

點評:本題考查了單項式乘單項式,單項式除單項式,冪的乘方,同底數(shù)冪的除法,注意掌握各運算法則.

4

考點:完全平方公式。

專題:計算題。

分析:首先找到它后面那個整數(shù)x+1,然后根據(jù)完全平方公式解答.

解答:解:x2是一個正整數(shù)的平方,它后面一個整數(shù)是x+1,

∴它后面一個整數(shù)的平方是:(x+1)2=x2+2x+1.

故選C.

點評:本題主要考查完全平方公式,熟記公式結(jié)構(gòu)是解題的關(guān)鍵.完全平方公式:(a±b)2=a2±2ab+b2.

5,

考點:因式分解-十字相乘法等;因式分解的意義。

分析:根據(jù)因式分解的定義,把一個多項式化為幾個整式的積的形式,這樣的式子變形叫做把這個單項式因式分解,注意分解的結(jié)果要正確.

解答:解:A、x3﹣x=x(x2﹣1)=x(x+1)(x﹣1),分解不徹底,故本選項錯誤;

B、運用十字相乘法分解m2+m﹣6=(m+3)(m﹣2),正確;

C、是整式的乘法,不是分解因式,故本選項錯誤;

D、沒有平方和的公式,x2+y2不能分解因式,故本選項錯誤.

故選B.

點評:本題考查了因式分解定義,十字相乘法分解因式,注意:(1)因式分解的是多項式,分解的結(jié)果是積的形式.(2)因式分解一定要徹底,直到不能再分解為止.

6

考點:因式分解-十字相乘法等;因式分解的意義。

分析:根據(jù)因式分解的定義,把一個多項式化為幾個整式的積的形式,這樣的式子變形叫做把這個單項式因式分解,注意分解的結(jié)果要正確.

解答:解:A、x3﹣x=x(x2﹣1)=x(x+1)(x﹣1),分解不徹底,故本選項錯誤;

B、運用十字相乘法分解m2+m﹣6=(m+3)(m﹣2),正確;

C、是整式的乘法,不是分解因式,故本選項錯誤;

D、沒有平方和的公式,x2+y2不能分解因式,故本選項錯誤.

故選B.

點評:本題考查了因式分解定義,十字相乘法分解因式,注意:(1)因式分解的是多項式,分解的結(jié)果是積的形式.(2)因式分解一定要徹底,直到不能再分解為止.

6.

考點:列代數(shù)式。

專題:應(yīng)用題。

分析:可綠化部分的面積為=S長方形ABCD﹣S矩形LMPQ﹣S?RSTK+S重合部分.

解答:解:∵長方形的面積為ab,矩形道路LMPQ面積為bc,平行四邊形道路RSTK面積為ac,矩形和平行四邊形重合部分面積為c2.

∴可綠化部分的面積為ab﹣bc﹣ac+c2.

故選C.

點評:此題要注意的是路面重合的部分是面積為c2的平行四邊形.

用字母表示數(shù)時,要注意寫法:

①在代數(shù)式中出現(xiàn)的乘號,通常簡寫做“”或者省略不寫,數(shù)字與數(shù)字相乘一般仍用“×”號;

②在代數(shù)式中出現(xiàn)除法運算時,一般按照分數(shù)的寫法來寫;

③數(shù)字通常寫在字母的前面;

④帶分數(shù)的要寫成假分數(shù)的形式.

詞條內(nèi)容僅供參考,如果您需要解決具體問題
(尤其在法律、醫(yī)學(xué)等領(lǐng)域),建議您咨詢相關(guān)領(lǐng)域?qū)I(yè)人士。

標簽

因式分解

推薦詞條