七年級下冊數(shù)學(xué)練習(xí)題
相信也有部分同學(xué)會利用寒假時間在家自己預(yù)習(xí)功課吧,預(yù)習(xí)之后你的掌握程度怎樣呢?下面小編給大家整理了一些七年級下冊的練習(xí)題,大家可以自我檢測一下。
【資料圖】
一、選擇題
1.在數(shù)軸上表示不等式2x﹣4>0的解集,正確的是( )
A. B. C. D.
2.如果 是二元一次方程2x﹣y=3的解,則m=( )
A.0 B.﹣1 C.2 D.3
3.若a>b,則下列不等式中,不成立的是( )
A.a+5>b+5 B.a﹣5>b﹣5 C.5a>5b D.﹣5a>﹣5b
4.下列長度的各組線段首尾相接能構(gòu)成三角形的是( )
A.3cm、5cm、8cm B.3cm、5cm、6cm C.3cm、3cm、6cm D.3cm、5cm、10cm
5.商店出售下列形狀的地磚:
①長方形;②正方形;③正五邊形;④正六邊形.
若只選購其中某一種地磚鑲嵌地面,可供選擇的地磚共有( )
A.1種 B.2種 C.3種 D.4種
6.如圖,將矩形ABCD沿AE折疊,若∠BAD′=30°,則∠AED′等于( )
A.30° B.45° C.60° D.75°
7.在下列條件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能確定△ABC是直角三角形的條件有( )
A.1個 B.2個 C.3個 D.4個
8.已知關(guān)于x的不等式組 無解,則a的取值范圍是( )
A.a≤2 B.a≥2 C.a<2 D.a>2
二、填空題
9.若 是方程x﹣ay=1的解,則a= .
10.不等式3x﹣9<0的最大整數(shù)解是 .
11.列不等式表示:“2x與1的和不大于零”: .
12.將方程2x+y=6寫成用含x的代數(shù)式表示y,則y= .
13.等腰三角形的兩邊長分別為9cm和4cm,則它的周長為 .
14.一個三角形的三邊長分別是3,1﹣2m,8,則m的取值范圍是
【參考答案】
一、選擇題(共8小題,每小題3分,滿分24分)
1.在數(shù)軸上表示不等式2x﹣4>0的解集,正確的是( )
A. B. C. D.
【考點】解一元一次不等式;在數(shù)軸上表示不等式的解集.
【分析】將不等式的解集在數(shù)軸上表示出來就可判定答案了.
【解答】解:不等式的解集為:x>2,
故選A
2.如果 是二元一次方程2x﹣y=3的解,則m=( )
A.0 B.﹣1 C.2 D.3
【考點】二元一次方程的解.
【分析】本題將 代入二元一次方程2x﹣y=3,解出即可.
【解答】解:∵ 是二元一次方程2x﹣y=3的解,
∴2﹣m=3,
解得m=﹣1.
故選B.
3.若a>b,則下列不等式中,不成立的是( )
A.a+5>b+5 B.a﹣5>b﹣5 C.5a>5b D.﹣5a>﹣5b
【考點】不等式的性質(zhì).
【分析】根據(jù)不等式的性質(zhì)1,可判斷A、B,根據(jù)不等式的性質(zhì)2,可判斷C,根據(jù)不等式的性質(zhì)3,可判斷D.
【解答】解:A、B、不等式的兩邊都加或都減同一個整式,不等號的方向不變,故A、B正確;
C、不等式的兩邊都乘以同一個正數(shù)不等號的方向不變,故C正確;
D、不等式的兩邊都乘以同一個負數(shù)不等號的方向改變,故D錯誤;
故選:D.
4.下列長度的各組線段首尾相接能構(gòu)成三角形的是( )
A.3cm、5cm、8cm B.3cm、5cm、6cm C.3cm、3cm、6cm D.3cm、5cm、10cm
【考點】三角形三邊關(guān)系.
【分析】根據(jù)在三角形中任意兩邊之和大于第三邊,任意兩邊之差小于第三邊.即可求解.
【解答】解:根據(jù)三角形的三邊關(guān)系,得:
A、3+5=8,排除;
B、3+5>6,正確;
C、3+3=6,排除;
D、3+5<10,排除.
故選B.
5.商店出售下列形狀的地磚:
①長方形;②正方形;③正五邊形;④正六邊形.
若只選購其中某一種地磚鑲嵌地面,可供選擇的地磚共有( )
A.1種 B.2種 C.3種 D.4種
【考點】平面鑲嵌(密鋪).
【分析】幾何圖形鑲嵌成平面的關(guān)鍵是:圍繞一點拼在一起的多邊形的內(nèi)角加在一起恰好組成一個周角.
【解答】解:①長方形的每個內(nèi)角是90°,4個能組成鑲嵌;
②正方形的每個內(nèi)角是90°,4個能組成鑲嵌;
③正五邊形每個內(nèi)角是180°﹣360°÷5=108°,不能整除360°,不能鑲嵌;
④正六邊形的每個內(nèi)角是120°,能整除360°,3個能組成鑲嵌;
故若只選購其中某一種地磚鑲嵌地面,可供選擇的地磚有①②④.
故選C.
6.如圖,將矩形ABCD沿AE折疊,若∠BAD′=30°,則∠AED′等于( )
A.30° B.45° C.60° D.75°
【考點】矩形的性質(zhì);翻折變換(折疊問題).
【分析】根據(jù)折疊的性質(zhì)求∠EAD′,再在Rt△EAD′中求∠AED′.
【解答】解:根據(jù)題意得:∠DAE=∠EAD′,∠D=∠D′=90°.
∵∠BAD′=30°,
∴∠EAD′= (90°﹣30°)=30°.
∴∠AED′=90°﹣30°=60°.
故選C.
7.在下列條件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能確定△ABC是直角三角形的條件有( )
A.1個 B.2個 C.3個 D.4個
【考點】勾股定理的逆定理;三角形內(nèi)角和定理.
【分析】根據(jù)直角三角形的判定方法對各個選項進行分析,從而得到答案.
【解答】解:①因為∠A+∠B=∠C,則2∠C=180°,∠C=90°,所以△ABC是直角三角形;
②因為∠A:∠B:∠C=1:2:3,設(shè)∠A=x,則x+2x+3x=180,x=30°,∠C=30°×3=90°,所以△ABC是直角三角形;
③因為∠A=90°﹣∠B,所以∠A+∠B=90°,則∠C=180°﹣90°=90°,所以△ABC是直角三角形;
④因為∠A=∠B=∠C,所以三角形為等邊三角形.
所以能確定△ABC是直角三角形的有①②③共3個.
故選:C.
8.已知關(guān)于x的不等式組 無解,則a的取值范圍是( )
A.a≤2 B.a≥2 C.a<2 D.a>2
【考點】解一元一次不等式組.
【分析】根據(jù)不等式組無解的條件即可求出a的取值范圍.
【解答】解:由于不等式組 無解,
根據(jù)“大大小小則無解”原則,
a≥2.
故選B.
二、填空題(共7小題,每小題3分,滿分21分)
9.若 是方程x﹣ay=1的解,則a= 1 .
【考點】二元一次方程的.解.
【分析】知道了方程的解,可以把這組解代入方程,得到一個含有未知數(shù)k的一元一次方程,從而可以求出a的值.
【解答】解:把 代入方程x﹣ay=1,
得3﹣2a=1,
解得a=1.
故答案為1.
10.不等式3x﹣9<0的最大整數(shù)解是 2 .
【考點】一元一次不等式的整數(shù)解.
【分析】首先利用不等式的基本性質(zhì)解不等式,再從不等式的解集中找出適合條件的最大整數(shù)即可.
【解答】解:不等式的解集是x<3,故不等式3x﹣9<0的最大整數(shù)解為2.
故答案為2.
11.列不等式表示:“2x與1的和不大于零”: 2x+1≤0 .
【考點】由實際問題抽象出一元一次不等式.
【分析】理解:不大于的意思是小于或等于.
【解答】解:根據(jù)題意,得2x+1≤0.
12.將方程2x+y=6寫成用含x的代數(shù)式表示y,則y= 6﹣2x .
【考點】解二元一次方程.
【分析】要用含x的代數(shù)式表示y,就要把方程中含有y的項移到方程的左邊,其它的項移到方程的另一邊.
【解答】解:移項,得y=6﹣2x.
故填:6﹣2x.
13.等腰三角形的兩邊長分別為9cm和4cm,則它的周長為 22cm .
【考點】等腰三角形的性質(zhì);三角形三邊關(guān)系.
【分析】先根據(jù)已知條件和三角形三邊關(guān)系定理可知,等腰三角形的腰長不可能為4cm,只能為9cm,再根據(jù)周長公式即可求得等腰三角形的周長.
【解答】解:∵等腰三角形的兩條邊長分別為9cm,4cm,
∴由三角形三邊關(guān)系可知:等腰三角形的腰長不可能為4cm,只能為9cm,
∴等腰三角形的周長=9+9+4=22.
故答案為:22cm.
14.一個三角形的三邊長分別是3,1﹣2m,8,則m的取值范圍是 ﹣5
【考點】三角形三邊關(guān)系;解一元一次不等式組.
【分析】根據(jù)三角形的三邊關(guān)系:①兩邊之和大于第三邊,②兩邊之差小于第三邊即可得到答案.
【解答】解:8﹣3<1﹣2m<3+8,
即5<1﹣2m<11,
解得:﹣5
故答案為:﹣5
詞條內(nèi)容僅供參考,如果您需要解決具體問題
(尤其在法律、醫(yī)學(xué)等領(lǐng)域),建議您咨詢相關(guān)領(lǐng)域?qū)I(yè)人士。